Combined biofouling and scaling in membrane feed channels: a new modeling approach.

نویسندگان

  • A I Radu
  • L Bergwerff
  • M C M van Loosdrecht
  • C Picioreanu
چکیده

A mathematical model was developed for combined fouling due to biofilms and mineral precipitates in membrane feed channels with spacers. Finite element simulation of flow and solute transport in two-dimensional geometries was coupled with a particle-based approach for the development of a composite (cells and crystals) foulant layer. Three fouling scenarios were compared: biofouling only, scaling only and combined fouling. Combined fouling causes a quicker flux decline than the summed flux deterioration when scaling and biofouling act independently. The model results indicate that the presence of biofilms leads to more mineral formation due to: (1) an enhanced degree of saturation for salts next to the membrane and within the biofilm; and (2) more available surface for nucleation to occur. The impact of biofilm in accelerating gypsum precipitation depends on the composition of the feed water (eg the presence of NaCl) and the kinetics of crystal nucleation and growth. Interactions between flow, solute transport and biofilm-induced mineralization are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Advanced Dynamic Simulation of Membrane Desalination Modules Accounting for Organic Fouling

A reliable dynamic simulator (based on a sound process model) is highly desirable for optimizing the performance of individual membrane modules and of entire desalination plants. This paper reports on progress toward development of a comprehensive model of the complicated physical-chemical processes occurring in spiral wound membrane (SWM) modules, that accounts for the...

متن کامل

Hydrogel-coated feed spacers in two-phase flow cleaning in spiral wound membrane elements: a novel platform for eco-friendly biofouling mitigation.

Biofouling is still a major challenge in the application of nanofiltration and reverse osmosis membranes. Here we present a platform approach for environmentally friendly biofouling control using a combination of a hydrogel-coated feed spacer and two-phase flow cleaning. Neutral (polyHEMA-co-PEG10MA), cationic (polyDMAEMA) and anionic (polySPMA) hydrogels have been successfully grafted onto pol...

متن کامل

Mechanistic Modeling of Organic Compounds Separation from Water via Polymeric Membranes

A mathematical model considering mass and momentum transfer was developed for simulation of ethanol dewatering via pervaporation process. The process involves removal of water from a water/ethanol liquid mixture using a dense polymeric membrane. The model domain was divided into two compartments including feed and membrane. For a description of water transport in ...

متن کامل

Biofouling Behavior on Forward Osmosis Using Vertically Aligned CNT Membrane on Alumina

Nowadays, forward osmosis (FO) with many advantages in water treatment, are so attractive for researchers and investigators that the studies are going to optimize and increase its efficiency. However one of the most controversial operating malfunctions of FO process is fouling that limits the FO global application. In the following research, vertically aligned carbon nanotube (VACNT) on alumina...

متن کامل

Modeling of Nanofiltration for ‎Concentrated Electrolyte Solutions using ‎Linearized Transport Pore Model

   In this study, linearized transport pore model (LTPM) is applied for modeling nanofiltration (NF) membrane separation process. This modeling approach is based on the modified extended Nernst-Planck equation enhanced by Debye-Huckel theory to take into account the variations of activity coefficient especially at high salt concentrations. Rejection of single-salt (NaCl) electrolyte is inve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biofouling

دوره 31 1  شماره 

صفحات  -

تاریخ انتشار 2015